Selected Solutions for Chapter 24: Single-Source Shortest Paths

Solution to Exercise 24.1-3

If the greatest number of edges on any shortest path from the source is m, then the path-relaxation property tells us that after m iterations of BELLMAN-FORD, every vertex v has achieved its shortest-path weight in v.d. By the upper-bound property, after m iterations, no d values will ever change. Therefore, no d values will change in the $(m+1)$ st iteration. Because we do not know m in advance, we cannot make the algorithm iterate exactly m times and then terminate. But if we just make the algorithm stop when nothing changes any more, it will stop after $m+1$ iterations.

```
BELLMAN-FORD- \((\mathrm{M}+1)(G, w, s)\)
Initialize-Single-Source \((G, s)\)
changes \(=\) TRUE
while changes \(==\) TRUE
    changes \(=\) FALSE
    for each edge \((u, v) \in G . E\)
        RELAX-M \((u, v, w)\)
\(\operatorname{RELAX}-\mathrm{M}(u, v, w)\)
if \(v . d>u . d+w(u, v)\)
    \(\nu . d=u . d+w(u, v)\)
    \(\nu . \pi=u\)
    changes \(=\) TRUE
```

The test for a negative-weight cycle (based on there being a d value that would change if another relaxation step was done) has been removed above, because this version of the algorithm will never get out of the while loop unless all d values stop changing.

Solution to Exercise 24.3-3

Yes, the algorithm still works. Let u be the leftover vertex that does not get extracted from the priority queue Q. If u is not reachable from s, then
$u . d=\delta(s, u)=\infty$. If u is reachable from s, then there is a shortest path $p=s \leadsto x \rightarrow u$. When the node x was extracted, $x . d=\delta(s, x)$ and then the edge (x, u) was relaxed; thus, $u \cdot d=\delta(s, u)$.

Solution to Exercise 24.3-6

To find the most reliable path between s and t, run Dijkstra's algorithm with edge weights $w(u, v)=-\lg r(u, v)$ to find shortest paths from s in $O(E+V \lg V)$ time. The most reliable path is the shortest path from s to t, and that path's reliability is the product of the reliabilities of its edges.
Here's why this method works. Because the probabilities are independent, the probability that a path will not fail is the product of the probabilities that its edges will not fail. We want to find a path $s \stackrel{p}{\rightarrow} t$ such that $\prod_{(u, v) \in p} r(u, v)$ is maximized. This is equivalent to maximizing $\lg \left(\prod_{(u, v) \in p} r(u, v)\right)=\sum_{(u, v) \in p} \lg r(u, v)$, which is in turn equivalent to minimizing $\sum_{(u, v) \in p}-\lg r(u, v)$. (Note: $r(u, v)$ can be 0 , and $\lg 0$ is undefined. So in this algorithm, define $\lg 0=-\infty$.) Thus if we assign weights $w(u, v)=-\lg r(u, v)$, we have a shortest-path problem.
Since $\lg 1=0, \lg x<0$ for $0<x<1$, and we have defined $\lg 0=-\infty$, all the weights w are nonnegative, and we can use Dijkstra's algorithm to find the shortest paths from s in $O(E+V \lg V)$ time.

Alternate answer

You can also work with the original probabilities by running a modified version of Dijkstra's algorithm that maximizes the product of reliabilities along a path instead of minimizing the sum of weights along a path.
In Dijkstra's algorithm, use the reliabilities as edge weights and substitute

- max (and Extract-Max) for min (and Extract-Min) in relaxation and the queue,
- . for + in relaxation,
- 1 (identity for \cdot) for 0 (identity for +) and $-\infty$ (identity for \min) for ∞ (identity for max).

For example, we would use the following instead of the usual RELAX procedure:

```
RELAX-ReLiABility \((u, v, r)\)
if \(v . d<u \cdot d \cdot r(u, v)\)
    \(\nu . d=u . d \cdot r(u, v)\)
    \(\nu . \pi=u\)
```

This algorithm is isomorphic to the one above: it performs the same operations except that it is working with the original probabilities instead of the transformed ones.

Solution to Exercise 24.4-7

Observe that after the first pass, all d values are at most 0 , and that relaxing edges (ν_{0}, v_{i}) will never again change a d value. Therefore, we can eliminate ν_{0} by running the Bellman-Ford algorithm on the constraint graph without the ν_{0} node but initializing all shortest path estimates to 0 instead of ∞.

Solution to Exercise 24.5-4

Whenever Relax sets π for some vertex, it also reduces the vertex's d value. Thus if $s . \pi$ gets set to a non-NIL value, $s . d$ is reduced from its initial value of 0 to a negative number. But $s . d$ is the weight of some path from s to s, which is a cycle including s. Thus, there is a negative-weight cycle.

Solution to Problem 24-3

\boldsymbol{a}. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph $G=(V, E)$, which we form as follows. There is one vertex in V for each currency, and for each pair of currencies c_{i} and c_{j}, there are directed edges $\left(v_{i}, v_{j}\right)$ and $\left(v_{j}, v_{i}\right)$. (Thus, $|V|=n$ and $|E|=n(n-1)$.)
To determine edge weights, we start by observing that
$R\left[i_{1}, i_{2}\right] \cdot R\left[i_{2}, i_{3}\right] \cdots R\left[i_{k-1}, i_{k}\right] \cdot R\left[i_{k}, i_{1}\right]>1$
if and only if

$$
\frac{1}{R\left[i_{1}, i_{2}\right]} \cdot \frac{1}{R\left[i_{2}, i_{3}\right]} \cdots \frac{1}{R\left[i_{k-1}, i_{k}\right]} \cdot \frac{1}{R\left[i_{k}, i_{1}\right]}<1 .
$$

Taking logs of both sides of the inequality above, we express this condition as

$$
\lg \frac{1}{R\left[i_{1}, i_{2}\right]}+\lg \frac{1}{R\left[i_{2}, i_{3}\right]}+\cdots+\lg \frac{1}{R\left[i_{k-1}, i_{k}\right]}+\lg \frac{1}{R\left[i_{k}, i_{1}\right]}<0 .
$$

Therefore, if we define the weight of edge $\left(\nu_{i}, v_{j}\right)$ as

$$
\begin{aligned}
w\left(v_{i}, v_{j}\right) & =\lg \frac{1}{R[i, j]} \\
& =-\lg R[i, j]
\end{aligned}
$$

then we want to find whether there exists a negative-weight cycle in G with these edge weights.
We can determine whether there exists a negative-weight cycle in G by adding an extra vertex ν_{0} with 0 -weight edges $\left(\nu_{0}, \nu_{i}\right)$ for all $\nu_{i} \in V$, running Bellman-Ford from ν_{0}, and using the boolean result of Bellman-Ford (which is TRUE if there are no negative-weight cycles and FALSE if there is a
negative-weight cycle) to guide our answer. That is, we invert the boolean result of Bellman-Ford.
This method works because adding the new vertex ν_{0} with 0 -weight edges from ν_{0} to all other vertices cannot introduce any new cycles, yet it ensures that all negative-weight cycles are reachable from ν_{0}.
It takes $\Theta\left(n^{2}\right)$ time to create G, which has $\Theta\left(n^{2}\right)$ edges. Then it takes $O\left(n^{3}\right)$ time to run Bellman-Ford. Thus, the total time is $O\left(n^{3}\right)$.
Another way to determine whether a negative-weight cycle exists is to create G and, without adding ν_{0} and its incident edges, run either of the all-pairs shortestpaths algorithms. If the resulting shortest-path distance matrix has any negative values on the diagonal, then there is a negative-weight cycle.
b. Assuming that we ran Bellman-Ford to solve part (a), we only need to find the vertices of a negative-weight cycle. We can do so as follows. First, relax all the edges once more. Since there is a negative-weight cycle, the d value of some vertex u will change. We just need to repeatedly follow the π values until we get back to u. In other words, we can use the recursive method given by the PRINT-PATH procedure of Section 22.2, but stop it when it returns to vertex u.
The running time is $O\left(n^{3}\right)$ to run Bellman-Ford, plus $O(n)$ to print the vertices of the cycle, for a total of $O\left(n^{3}\right)$ time.

