Selected Solutionsfor Chapter 24:
Single-Source Shortest Paths

Solution to Exercise 24.1-3

If the greatest number of edges on any shortest path fronotiree ism, then the
path-relaxation property tells us that afterterations of BELLMAN -FORD, every
vertexv has achieved its shortest-path weightid. By the upper-bound property,
afterm iterations, naf values will ever change. Therefore, ddovalues will change

in the (m + 1)st iteration. Because we do not knewin advance, we cannot make
the algorithm iterate exactly: times and then terminate. But if we just make the
algorithm stop when nothing changes any more, it will staprat + 1 iterations.

BELLMAN-FORD-(M+1)(G, w, s)

INITIALIZE -SINGLE-SOURCHG, s)
changes = TRUE
while changes == TRUE
changes = FALSE
for each edgéu,v) € G.E
RELAX-M(u, v, w)

RELAX-M(u, v, w)

if v.d > u.d+ w(u,v)
v.d =u.d+ wu,v)
VT = U
changes = TRUE

The test for a negative-weight cycle (based on there beidgvalue that would
change if another relaxation step was done) has been reratrose, because this
version of the algorithm will never get out of threéhile loop unless alld values
stop changing.

Solution to Exercise 24.3-3

Yes, the algorithm still works. Let: be the leftover vertex that does not
get extracted from the priority queu@. If u is not reachable fronsy, then
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u.d=24(s,u) = oco. If u is reachable froms, then there is a shortest path
p = s~ x — u. When the noder was extractedx.d = §(s, x) and then the
edge(x, u) was relaxed; thuss.d = 6(s, u).

Solution to Exercise 24.3-6

To find the most reliable path betweemnd:, run Dijkstra’s algorithm with edge
weightsw (1, v) = —Ig r(u, v) to find shortest paths fromin O(E+V Ig V) time.
The most reliable path is the shortest path froto 7, and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilitiesimdependent, the
probability that a path will not fail is the product of the piabilities that its edges
will not fail. We want to find a path % ¢ such thaﬂ(u,v)ep r(u,v) is maximized.
This is equivalent to maximizing (@], ,)c, 7 (¥, v)) = >, )¢, 197 (1, v), which
is in turn equivalent to minimizing _, )<, —!97(u,v). (Note:r(u, v) can be 0,
and 1g0 is undefined. So in this algorithm, definellg= —oc0.) Thus if we assign
weightsw(u, v) = —Igr(u, v), we have a shortest-path problem.

Since lgl =0, Igx < 0 for 0 < x < 1, and we have defined (= —oc, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to fiedshortest
paths froms in O(E + V' Ig V) time.

Alternate answer

You can also work with the original probabilities by runniagnodified version of
Dijkstra’s algorithm that maximizes the product of reliithds along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weagyand substitute

* max (and KTRACT-MAX) for min (and EXTRACT-MIN) in relaxation and the
gueue,

+ . for + in relaxation,

* 1 (identity for-) for O (identity for+) and—oo (identity for min) foroo (identity
for max).

For example, we would use the following instead of the usualAX procedure:

RELAX-RELIABILITY (u,v,r)
ifv.d<u.d-r(u,v)

v.d =u.d-r(u,v)

V.T = U

This algorithm is isomorphic to the one above: it performs game operations
except that it is working with the original probabilitiesstead of the transformed
ones.
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Solution to Exercise 24.4-7

Observe that after the first pass, dllvalues are at modd, and that relaxing
edgeqvy, v;) will never again changedvalue. Therefore, we can eliminatgby

running the Bellman-Ford algorithm on the constraint grattmout thev, node
but initializing all shortest path estimatestd@nstead ofo.

Solution to Exercise 24.5-4

Whenever RLAX setsw for some vertex, it also reduces the vertex'sralue.
Thus ifs. 7 gets set to a nomHL value,s.d is reduced from its initial value df to

a negative number. Butd is the weight of some path fromto s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Problem 24-3

a. We can use the Bellman-Ford algorithm on a suitable weigliieeicted graph
G = (V, E), which we form as follows. There is one vertex lihfor each
currency, and for each pair of currencigsandc;, there are directed edges
(vi,v;) and(vj,v;). (Thus,|V| =nand|E| =n(n —1).)

To determine edge weights, we start by observing that
R[il, 12] . R[iz, 13] see R[ik_l, lk] . R[ik, ll] > 1
if and only if
1 1 1 1
Rli1,ia]  Rliz, i3] Rlig—1,ix] Rlix,11]
Taking logs of both sides of the inequality above, we exptigisscondition as
lg ! +lg ! +---+1g ! +1lg !
Rliy, i2] Rliz, i3] Rlix—1, k] Rlix, 1]
Therefore, if we define the weight of edge, v;) as
1
R[i, j]
= —IgR[. /],

then we want to find whether there exists a negative-weigtiecyn G with

these edge weights.

<0.

w(v;,v;) = g

We can determine whether there exists a negative-weighs ay¢ by adding
an extra vertexv, with 0-weight edges(vy,v;) for all v; € V, running
BELLMAN -FORD from vy, and using the boolean result oEBLMAN -FORD
(which is TRUE if there are no negative-weight cycles arsl Sk if there is a
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negative-weight cycle) to guide our answer. That is, werirtiy® boolean result
of BELLMAN -FORD.

This method works because adding the new vergxvith 0-weight edges
from v, to all other vertices cannot introduce any new cycles, yen#gures
that all negative-weight cycles are reachable fagm

It takes®(n?) time to createG, which has®(n?) edges. Then it take®(n?)
time to run BELLMAN -FORD. Thus, the total time i€ (n3).

Another way to determine whether a negative-weight cycisteis to creaté
and, without adding, and its incident edges, run either of the all-pairs shortest
paths algorithms. If the resulting shortest-path distanatix has any negative
values on the diagonal, then there is a negative-weighecycl

b. Assuming that we ran BLLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so asvislid-irst, relax
all the edges once more. Since there is a negative-weighd,dhed value of
some vertex will change. We just need to repeatedly follow thevalues until
we get back ta:. In other words, we can use the recursive method given by the
PRINT-PATH procedure of Section 22.2, but stop it when it returns toevart

The running time isO(n3) to run BELLMAN -FORD, plus O(n) to print the
vertices of the cycle, for a total aP(n3) time.



